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Abstract

It is shown that a microscopic system consisting of Brownian particles moving
in a spatially asymmetric but periodic potential (ratchet) and contacting with
the alternating hot and cold reservoirs along space coordinate and an external
force applying on the particles may work as a refrigerator. In order to clarify the
underlying physical pictures of the system, the heat flows via both the potential
energy and the kinetic energy of the particles are considered simultaneously.
Based on an Arrhenius’ factor describing the forward and backward particle
currents, expressions for some important performance parameters of the
refrigerator, such as the coefficient of performance, cooling rate and power
input, are derived analytically. The maximum coefficient of performance
and cooling rate are numerically calculated for some given parameters. The
influence of the main parameters such as the external force, barrier height of
the potential, asymmetry of the potential and temperature ratio of the heat
reservoirs on the performance of the Brownian refrigerator is discussed. The
optimum criteria of some characteristic parameters are given. It is found that
the Brownian refrigerator may be controlled to operate in different regions
through the choice of several parameters.
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1. Introduction

Recently, there has been much interest in the study of microscopic engines and heat pumps (or
refrigerators). One aspect is the need to have such devices in order to utilize energy resources
available at the microscopic scale and the other aspect is the trend in miniaturization of devices
demanding tiny engines and heat pumps that operate at the same scale. The molecular heat
engines and heat pumps have been proposed as a class of microscopic machines based on recent
developments in nanotechnology and single-molecule manipulations [1–7]. Many important
results relative to the microscopic heat engines and heat pumps have been obtained [5, 8–16],
but the investigation into the microscopic refrigerators is still at a preliminary stage. Thus,
modeling microscopic refrigerators and finding how well they perform is a primary task to be
undertaken at present.

The idea that Brownian microscopic heat engines can work under nonuniform temperature
was first presented by Buttiker [17], van Kampen [18] and Landuaer [19]. Due to the
importance of Brownian ratchets (motors) in developing molecular motors [1, 2], many
researchers [3, 16, 20–24] have investigated the performance characteristics of the Brownian
heat engines driven by a contact with the reservoirs at different temperatures and have obtained
many meaningful conclusions. On the other hand, the refrigeration can be achieved by
reducing the thermal noise of nanodevices with a feedback system that detects their velocities
and applies on them a corresponding friction-like control force [25]. Van den Broeck and
Kawai gave a novel model of the Brownian microscopic refrigerator consisting of two heat
reservoirs with different temperatures in the presence of a constant force on a nanodevice [5].
Kim and Qian extended fluctuation theorems to a molecular system consisting of Brownian
particles in a heat bath under feedback control of their velocities [7]. Van den Broek and Van
den Broeck presented a chiral rotational model and studied the performance characteristics of
the chiral molecular device operation as a heat engine or a heat pump [26, 27]. However, so far
the optimal performance of irreversible Brownian refrigerators and their parametric optimum
criteria have been rarely investigated. Thus, it is of great significance to study the optimal
performance and parameters of Brownian refrigerators.

In this paper, we will give a detailed study of an irreversible Brownian micro-refrigerator
in a spatially periodic temperature field. In the Brownian micro-refrigerator, the heat flows
via the potential and kinetic energies of Brownian particles will be considered. The general
expressions of several important parameters of the refrigerator, such as the coefficient of
performance (COP), cooling rate and power input are derived. Moreover, the influence of
some main parameters on the performance of the Brownian micro-refrigerator is analyzed
in detail. Several novel results, which can reveal the general performance characteristics of
Brownian micro-refrigerators, are obtained. The results obtained here will be helpful for
deeply understanding the performance characteristics of Brownian micro-refrigerators.

2. An irreversible Brownian micro-refrigerator

The Brownian refrigeration system consists of two parts, Brownian particles which move
along a spatially asymmetric but periodic structure potential (ratchet) and two heat reservoirs
C and H at temperatures βC = (kBTC)−1 and βH = (kBTH )−1, respectively, where kB is the
Boltzmann constant. The particles are periodically in contact with the two heat reservoirs
along space coordinate [3, 17, 21] and an external force F is applied to the particles, as shown
in figure 1, where N+ and N− are, respectively, the numbers of forward and backward jumps
per unit time, D (0 < D < 1) is a constant, L is the period length of the potential and U0 is the
barrier height of the potential. It is assumed that the rates of both forward and backward jumps

2



J. Phys. A: Math. Theor. 42 (2009) 075006 B Lin and J Chen

β
Hβ

H
β

Cβ
C

L

FF

N
-

I
'

II
'

II

β
H

DL

F

β
C

I

N
+

U
0

Figure 1. The schematic diagram of a thermally driven Brownian refrigerator.

are proportional to the corresponding Arrhenius’ factor [23] and the system is in a state of
stable flow, so that the numbers of forward and backward jumps per unit time are, respectively,
determined by

Ṅ+ = 1

t
exp[−(U0 − FDL)/(kBTC)] (1)

and

Ṅ− = 1

t
exp{−[U0 + F(1 − D)L]/(kBTH )}, (2)

where t is a proportionality constant with a time dimension.
If N+ > N−, the thermal motor (ratchet) works as a two-reservoir micro-refrigerator. The

refrigerator will absorb the heat from the cold reservoir at temperature TC and release the heat
to the hot reservoir at temperature TH . When Brownian particles move in different regions,
the change of the potential energy will result in a heat exchange between the refrigerator and
the heat reservoirs. The heat flows from the cold reservoir to the refrigerator and from the
refrigerator to the hot reservoir via potential are, respectively, given by

Q̇
pot
C = (Ṅ+ − Ṅ−)(U0 − FDL) (3)

and

Q̇
pot
H = (Ṅ+ − Ṅ−)[U0 + F(1 − D)L]. (4)

The heat flow resulting from the change of the kinetic energy of Brownian particles is much
more complicated. When the particle lies in a region, it is in equilibrium with a heat reservoir.
According to the theory of the energy equipartition, the average kinetic energy per particle
is equal to kBT /2. In order to keep the Brownian refrigerator operating continuously and
stably, when the particles in region I leave this region, the particles with equal quantity must
be supplied from the neighbor regions II′ and II, so that the number of particles in a region
is constant. Consequently, when the particles leave regions II′ and II and enter region I, they
will release the heat energy (Ṅ+ + Ṅ−)kB(TH − TC)/2 to the cold reservoir to reduce their
average kinetic energy. Similarly, when the particles leave regions I and I′ and enter region II,
they will absorb the heat energy (Ṅ+ + Ṅ−)kB(TH − TC)/2 from the hot reservoir to rise their
average kinetic energy. It can be seen from the above analysis that the total heat flow from the
hot reservoir to the refrigerator due to the change of the kinetic energy of Brownian particles,
Q̇kin

H , is equal to that from the refrigerator to the cold reservoir, Q̇kin
C , i.e.,

Q̇kin
H = Q̇kin

C = (Ṅ+ + Ṅ−)kB(TH − Tc)/2 ≡ Q̇kin. (5)

It is seen from equation (5) that the energy (Ṅ+ +Ṅ−)kB(TH −TC)/2 is transferred completely
from the hot reservoir to the cold reservoir. It causes the heat leak between the hot and cold
reservoirs. This indicates the inherently irreversible nature of this heat flow.
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Figure 2. The variation of the cooling rate R∗ with respect to the parameters x and U∗
0 . The graph

is presented for the parameters τ = 0.7 and D = 0.3.

It is found from the above results that the total heat flows absorbed from the cold reservoir
and released to the hot reservoir are, respectively, given by

Q̇C = Q̇
pot
C − Q̇kin

C = (Ṅ+ − Ṅ−)(U0 − FDL) − (Ṅ+ + Ṅ−)kB(TH − TC)/2 (6)

and

Q̇H = Q̇
pot
H − Q̇kin

H = (Ṅ+ − Ṅ−)[U0 + F(1 − D)L] − (Ṅ+ + Ṅ−)kB(TH − TC)/2. (7)

Thus, the coefficient of performance (COP), the cooling rate and power input of the irreversible
Brownian refrigerator can be, respectively, expressed as

COP = Q̇C

Q̇H − Q̇C

= U ∗
0

x
− D − (1 − τ)

2x

eU∗
0 (1−1/τ)+[1+D(1/τ−1)]x + 1

eU∗
0 (1−1/τ)+[1+D(1/τ−1)]x − 1

, (8)

R = kBTH

t

{
(U ∗

0 − Dx)
[
e−(U∗

0 −Dx)/τ − e−(U∗
0 +(1−D)x)

]

− 1

2
(1 − τ)

[
e−(U∗

0 −Dx)/τ + e−(U∗
0 +(1−D)x)

]}
(9)

and

P = (Q̇H − Q̇C) = kBTH

t

[
e−(U∗

0 /τ−Dx/τ) − e−[U∗
0 +(1−D)x]]x, (10)

where τ = TC/TH , D = L1/L, U ∗
0 = U0/(kBTH ) and x = FL/(kBTH ). It can clearly

be seen from equations (8)–(10) that the heat flow due to the change of the kinetic energy
of Brownian particles affects the COP and cooling rate of the Brownian refrigerator, but it
does not affect the power input of the Brownian refrigerator. In order to discuss conveniently,
equations (9) and (10) can be rewritten in a dimensionless form, i.e., R∗ = Rt/(kBTH ) and
P ∗ = P t/(kBTH ).

3. General performance characteristics of the micro-refrigerator

Using equation (9), one can plot a three-dimensional diagram (x, U ∗
0 , R∗) for given τ and D,

as shown in figure 2, where the parameters τ = 0.7 and D = 0.3 are chosen. It can be seen
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Figure 3. The curves of the COP varying with the dimensionless external force x for some given
parameters: (a) τ = 0.7 and D = 0.3, (b) τ = 0.7 and U∗

0 = 2.0 and (c) U∗
0 = 2.0 and D = 0.3.

from figure 2 that the cooling rate R first increases and then decreases as x or U ∗
0 is increased.

It clearly shows that there are local optimal values of x or U ∗
0 at which the cooling rate R attains

its local maximum value for a given set of operating parameters. Similarly, using equation (8),
one can plot a three-dimensional diagram (x, U ∗

0 , COP) for given τ and D. Its shape is similar
to figure 2. Consequently, there are local optimal values of x or U ∗

0 at which the COP attains
its local maximum value for a given set of operating parameters.

Using equations (8) and (9), one can generate the curves of the COP and cooling rate
varying with the parameter x for given U ∗

0 , τ and D, as shown in figures 3 and 4. It can be
seen from figures 3 and 4 that both COP and R∗ are of concave curves that vanish at x = xmin

and x = xmax, and there exists a local maximum coefficient of performance (COP)max and a
local maximum R∗ in the region of xmin < x < xmax. Obviously, the maximum COP and R∗

depend on the parameters U ∗, τ and D.
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Figure 4. The curves of the cooling rate R∗ varying with the dimensionless external force x for
some given parameters. The values of the parameters τ , D and U∗

0 are the same as those used in
figure 3.

It can also be seen from figures 3 and 4 that for differently given parameters, (COP)max,
xCOP at the (COP)max, R∗

max, xR at the maximum cooling rate, xmin, and xmax will be different.
For example, for given D and τ , the larger the U ∗

0 , the larger the xmin, xmax, xCOP and xR; for
given U ∗

0 and τ , the larger the D, the less the xmin, xmax, (COP)max, xCOP, R∗
max and xR; for

given U ∗
0 and D, the larger the τ , the less the xmin, xCOP and xR , while the larger the xmax,
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0 , where the parameters D = 0.3 and τ = 0.7 are chosen.

(COP)max and R∗
max. Their physical meanings are very clear. When τ is increased, the power

input required by the system will decrease, and consequently, both the cooling rate R and the
COP will increase. If τ approached the unity, the system would get the thermal equilibrium
while both the cooling rate R and the COP would increase quickly. It can be found from
figure 1 and equations (6) and (7) that U0 − FDL is the energy required by a particle for a
forward jump, while U0 +F(1−D)L is the energy required by a particle for a backward jump.
The larger the D, the less the Q̇C . Thus, when D is increased, both R and COP will decrease.
It can also be found from equations (1), (2) and (7) that when U0 is increased, Ṅ+ − Ṅ− will
decrease and Q̇C will first increase and then decrease. Thus, both R and COP first increase
and then decrease as U ∗

0 is increased.
In order to understand further the general performance characteristics of the irreversible

Brownian refrigerator, equations (8) and (9) can be used to plot a three-dimensional graph
(COP, U ∗

0 , R∗) and the cooling rate versus COP curves, as shown in figures 5 and 6. It is clearly
seen that each curve in figure 6 is of a typical loop form of real conventional refrigerators
[28, 29]. When the Brownian refrigerator is operated in the region of x � xCOP or x � xR , the
cooling rate will decrease as the COP decreases. When the Brownian refrigerator is operated
in the region of xCOP � x � xR , the cooling rate will increase as the COP decreases and vice
versa. It is thus clear that when

xCOP � x � xR (11)

is satisfied, the optimal regions of the cooling rate and the COP should be subject to

R∗
m � R∗ � R∗

max (12)

and

(COP)m � COP � (COP)max, (13)

where R∗
m and (COP)m are, respectively, the dimensionless cooling rate at the (COP)max and

the COP at the maximum cooling rate. Through the choice of the parameters x, U ∗
0 , D and τ ,

the Brownian refrigerator may be controlled to operate in different behavior regimes.
Similarly, for given x, τ and D, using equations (8) and (9), one can plot the curves of

the COP and cooling rate varying with the parameter U ∗
0 , as shown in figures 7 and 8, where
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Figure 6. The curves of the cooling rate R∗ varying with the COP for some given parameters. The
values of the parameters τ , D and U∗

0 are the same as those used in figure 3.

U ∗
0 COP is the value of U ∗

0 at the (COP)max, U ∗
0R is the value of U ∗

0 at the local maximum cooling
rate, U ∗

0 min and U ∗
0 maxare, respectively, the minimum and maximum of U ∗

0 at which the COP
or the cooling rate is equal to zero. In figures 7 and 8, the parameters τ = 0.4, 0.5, 0.6 or
07, D = 0.1, 0.3, 0.5, 0.7 or 0.9 and x = 1.0, 1.5, 2.0, 2.5 or 3.0 are chosen. It is seen from
figures 7 and 8 that the COP or the cooling rate first increases and then decreases as U ∗

0 is
increased. It clearly shows that there is an optimal value U ∗

0 COP or U ∗
0R at which the COP or

the cooling rate attains its local maximum value for a given set of operating parameters. When
the same values of the related parameters used in figure 7 are chosen, by means of numerical
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and D = 0.3.

calculation, we can obtain the values of U ∗
0 min, U ∗

0 max, (COP)max, U ∗
0 COP, R∗

max and U ∗
0R for

different operating parameters. It is seen from figures 7 and 8 that for given D and τ , the
larger the x, the larger the U ∗

0 min, U0 max, U ∗
0 COP and U ∗

0R; for given x and τ , the larger the D,
the larger the U ∗

0 min, U ∗
0 max, U ∗

0 COP and U ∗
0R , while (COP)max and R∗

maxdo not vary with the
parameter D; for given x and D, the larger the τ , the larger the U ∗

0 max, U ∗
0 COP, (COP)max, U ∗

0R

and R∗
max, while the less the U ∗

0 min. It is also seen from figures 7 and 8 that the performance
characteristics between the cooling rate and the COP of an irreversible Brownian refrigerator
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for given x, τ and D are similar to those for given U ∗
0 , τ and D. When

U ∗
0R � U ∗

0 � U ∗
0 COP (14)

is satisfied, the Brownian refrigerator is operated in the optimal region. In this region, the
cooling rate will increase as the COP decreases and vice versa.

Figure 9 shows that for D = 0.3, τ = 0.7 and some different values of x, the cooling
rate versus COP curves are also some loop-shaped curves, which have two important points of
state: the maximum cooling rate point, (R∗

max, COPR) and the maximum COP point, (R∗
COP,

COPmax). The maximum cooling rate and (COP)max increase while the COP at the maximum
cooling rate and the cooling rate at the (COP)max decrease when x is increased. This indicates
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that through the reasonable choice of the parameters F , U0, D and τ , the Brownian refrigerator
may be controlled to operate in optimal regimes.

4. The optimum regions of the external force and the barrier height of the potential

It can be seen from figures 3 and 4 that for given U ∗
0 , τ and D, when x = xmin and x = xmax,

both the COP and the cooling rate are equal to zero. Their physical meanings are very clear.
When x � xmin, F is so small that Brownian particles run along a reverse way. In this case,
F becomes a load, so Brownian particles work as an engine. In xmin < x < xmax, the larger
the x, the larger the Ṅ+, while the smaller the Ṅ−. When x = xmax ≈ [U ∗

0 − 0.5(1 − τ)]/D,
Ṅ+ � Ṅ− and Q̇C = 0. Neither the cooling rate nor the COP may be obtained. Consequently,
if and only if the relation

(kBTH/L)xmin < F < (kBTH/L)xmax (15)

is satisfied, the ratchet can work as a two-reservoir refrigerator.
Similarly, it can be seen from figures 6 and 7 that for given x, τ and D, if and only if the

relation

kBTHU ∗
0 min < U0 < kBTHU ∗

0 max (16)

is satisfied, the ratchet can work as a two-reservoir refrigerator.

5. The maximum COP and cooling rate

For the given parameters D and τ , using equation (8) and the conditions ∂(COP)/∂x = 0 and
∂(COP)/∂U ∗

0 = 0, one can find that the COP has a maximum at x = xCOPM and U ∗
0 = U ∗

0 COPM,
which are the solution of the following transcendental equations:

x[f1 − 1]{[2(U ∗
0 − Dx) − (1 − τ)][1 + D(1/τ − 1)]f1 − 2D[f1 − 1]}
− {[2(U ∗

0 − Dx) − (1 − τ)]f1 − 2(U ∗
0 − Dx) − (1 − τ)}

× {[x(1 + D(1/τ − 1) + 1]f1 − 1} = 0 (17)

11
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Table 1. Optimal parameters at the maximum coefficient of performance for given D and τ .

D τ (COP)max R∗
M U∗

0 COPM xCOPM

0.1 0.3 0.404 8.69 × 10−23 24.91 48.29
0.5 0.938 2.39 × 10−19 24.95 23.38
0.7 2.174 9.32 × 10−15 24.97 10.57

0.5 0.3 0.385 3.82 × 10−16 24.93 27.49
0.5 0.916 4.28 × 10−14 24.96 17.14
0.7 2.149 1.28 × 10−12 24.99 9.13

0.9 0.3 0.368 3.42 × 10−11 24.95 19.21
0.5 0.893 4.46 × 10−11 25.01 13.53
0.7 2.122 4.77 × 10−11 25.09 7.99

Table 2. Optimal parameters at the maximum cooling rate for given D and τ .

D τ R∗
max (COP)RM U∗

0 RM xRM

0.1 0.3 0.0341 0.0081 4.56 39.05
0.5 0.1115 0.0132 4.57 38.07
0.7 0.2077 0.0194 4.58 37.29

0.5 0.3 0.0343 0.0087 17.97 34.64
0.5 0.1116 0.0143 18.18 34.86
0.7 0.2078 0.0210 17.51 33.32

0.9 0.3 0.0344 0.0111 24.95 27.00
0.5 0.1117 0.0185 24.96 26.9
0.7 0.2079 0.0261 24.97 26.8

and

[f2 − 1]{2[f2 − 1] + 2(U ∗
0 − Dx)(1 − 1/τ)f2 − (1 − τ)(1 − 1/τ)f2}

− (1 − 1/τ){[2(U ∗
0 − Dx) − (1 − τ)]f2 − 2(U ∗

0 − Dx) − (1 − τ)}f2 = 0,

(18)

where f1 = eU∗
0 (1−1/τ)+[1+D(1/τ−1)]x and f2 = eU∗

0 (1−1/τ)+[1+D(1/τ−1)]x .
Similarly, using equation (9) and the conditions ∂R∗/∂x = 0 and ∂R∗/∂U ∗

0 = 0, one can
find that the cooling rate has a maximum at x = xRM and U ∗

0 = U ∗
0 RM, which are the solution

of the following transcendental equations:

D[2(U ∗
0 − Dx) − (τ + 1)]e−(U∗

0 −Dx)/τ

+ τ [2(U ∗
0 − Dx)(1 − D) + 2D + 1 − τ ]e−[U∗

0 +(1−D)x] = 0 (19)

and

[(1 − τ) − 2(U ∗
0 − Dx) − 2τ ] e−(U∗

0 −Dx)/τ + τ [(1 − τ) + 2(U ∗
0 − Dx) − 2] e−[U∗

0 +(1−D)x] = 0.

(20)

Using equations (8), (9), (17) and (18), one can obtain the maximum coefficient of
performance (COP)max and the corresponding cooling rate RM and the optimal parameters
U0 COPM and xCOPM for given parameters D and τ , as indicated in table 1. Similarly, for given
parameters Dand τ , one can also obtain the maximum cooling rate Rmax and the corresponding
cooling rate (COP)RM and the optimal parameters U0 RM and xRM for given parameters Dand τ ,
as indicated in table 2. It can be seen from tables 1 and 2 that for differently given parameters
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D and τ , the (COP)max, R∗
max and the corresponding optimal parameters will be different. The

larger the parameter D is, the smaller the (COP)max and xCOPM, while the larger the RM and
U0 COPM. Similarly, the larger the parameter D, the larger theRmax, (COP)RM and U0 RM, while
the smaller the xRM. This implies that the smaller the parameter D, the smaller the U0 value at
the (COP)max or the maximum cooling rate Rmax, while the larger the x value at the (COP)max

or the maximum cooling rate. In addition, the larger the temperature ratio τ , the larger the
(COP)MAX, RM and U0 COPM or RMAX, (COP)RM and U0 RM, while the smaller the xCOPM or
xRM. This indicates that the smaller the temperature difference between the heat sink and the
cooling space, the larger the x value at the (COP)max or the maximum cooling rate Rmax, while
the smaller the U0 value at the (COP)max or the maximum cooling rate Rmax. Consequently,
through the choice of the parameters U ∗

0 , x, D and τ , Brownian micro-refrigerators may be
controlled to operate in different behavior regimes.

6. Conclusions

We have established a simple model of the Brownian micro-refrigerator and shown that
heat transfer can be controlled by a mechanical force. The performance characteristics of
the Brownian refrigerator which consists of Brownian particles moving a sawtooth potential
with an external force, where the viscous medium is alternately in contact with the hot and
cold reservoirs along the space coordinate, are investigated. It is found that the heat flow
(Ṅ+ + Ṅ−)kB(TH −TC)/2 due to the change of the kinetic energy of the particles is transferred
completely from the hot to the cold reservoir, the Brownian refrigerator is always irreversible
and its COP cannot approach the COP of the Carnot refrigerator even in the quasi-static limit.
This irreversibility leads to the loop-shaped cooling rate versus COP curves which are similar
to the typical characteristics of other real refrigerators. It is also found that the influence of
the external force, barrier height of the potential, asymmetry of the potential and temperature
ratio of the heat reservoirs on the performance of the Brownian refrigerator is obvious. When
the external force or the barrier height of the potential is determined by equation (15) or (16),
the thermal motor can work as a refrigerator. The Brownian refrigerator may be controlled
to operate in different regimes through the choice of the external force, barrier height of the
potential, asymmetry of the potential and temperature ratio of the heat reservoirs.
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